下面是小编为大家整理的2023年度八年级数学教案全套(七篇)(完整文档),供大家参考。
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么制定才合适呢?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。
八年级数学教案全套篇1
一、教学目标
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点.
三、课堂引入
下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度。
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range)。
四、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学教案全套篇2
教学目标
①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。
②理解整式除法的算理,发展有条理的思考及表达能力。
教学重点与难点
重点:整式除法的运算法则及其运用。
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。
教学准备
卡片及多媒体课件。
教学设计
情境引入
教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?
重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。
注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。
探究新知
(1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?
(2)你能利用(1)中的方法计算下列各式吗?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根据(2)说说单项式除以单项式的运算法则吗?
注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。
单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。
归纳法则
单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。
应用新知
例2计算:
(1)28x4y2÷7x3y;
(2)—5a5b3c÷15a4b。
首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。
注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。
巩固新知教科书第162页练习1及练习2。
学生自己尝试完成计算题,同桌交流。
注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。
作业
1。必做题:教科书第164页习题15。3第1题;
第2题。
2。选做题:教科书第164页习题15。3第8题
八年级数学教案全套篇3
一、学习目标及重、难点:
1、了解方差的定义和计算公式。
2、理解方差概念的产生和形成的过程。
3、会用方差计算公式来比较两组数据的波动大小。
重点:方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式
二、自主学习:
(一)知识我先懂:
方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的方差:即用
来表示。
给力小贴士:方差越小说明这组数据越 。波动性越 。
(二)自主检测小练习:
1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。
2、甲、乙两组数据如下:
甲组:10 9 11 8 12 13 10 7;
乙组:7 8 9 10 11 12 11 12.
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
三、新课讲解:
引例:问题:
从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:
= )
(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )
归纳:
方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的方差:即用 来表示。
(一)例题讲解:
例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、
测试次数 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志强 10 13 16 14 12
给力提示:先求平均数,在利用公式求解方差。
(二)小试身手
1、甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定去参加比赛。
1、求下列数据的众数:
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?
四、课堂小结
方差公式:
给力提示:方差越小说明这组数据越 。波动性越 。
每课一首诗:求方差,有公式;
先平均,再求差;
求平方,再平均;
所得数,是方差。
五、课堂检测
1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
六、课后作业
必做题:教材141页 练习1、2 选做题:练习册对应部分习题
七、学习小札记
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级数学教案全套篇4
教学目标:
1、经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2、索并掌握平行四边形的性质,并能简单应用;
3、在探索活动过程中发展学生的探究意识。
教学重点:
平行四边形性质的探索。
教学难点:
平行四边形性质的理解。
教学准备:
多媒体课件
教学过程:
第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)
1、小组活动一
内容:
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2、小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
第二环节 探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)
小组活动3:
用 一张半透明的纸复制你刚才画的平行四边形,并将复制 后的四边形绕一个顶点旋转180,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?
(1)让学生动手操作、复制、旋转 、观察、分析;
(2)学生交流、议论;
(3)教师利用多媒体展示实践的过程。
第三环节 推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)
实践 探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
(2)可以通过推理来证明这个结论,如图连结AC。
∵ 四边形ABCD是平行四边形
AD // BC, AB // CD
2,4
△AB C和△CDA中
1
AC=C A
4
△ABC≌△CDA(ASA)
AB=DC, AD=CB,B
又∵2
4
3=4
即BAD=DCB
第四环节 应用巩固 深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)
1。活动内容:
(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对 边分边平行 得到邻角互补;
又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
(2)练一练(P99随堂练习)
练1 如图:四边形ABCD是平行四边形。
(1)求ADC、BCD度数
(2)边AB、BC的度数、长度。
练2 四边形ABCD是平行四边形
(1)它的四条边中哪些 线段可以通过平移相到得到?
(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。
归 纳:平行四边形的性质:平行四边形的对角线互相平分。
第五环节 评价反思 概括总结(8分钟,学生踊跃谈感受和收获)
活动内容
师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
考一考:
1、ABCD中,B=60,则A= ,C= ,D= 。
2、ABCD中,A比B大20,则C= 。
3、ABCD中,AB=3,BC=5,则AD= CD= 。
4、ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。
布置作业
课本习题4。1
A组(学优生)1 、2
B组(中等生)1、2
C组(后三分之一生)1、2
八年级数学教案全套篇5
教材分析
本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。
学情分析
本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。
从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。
教学目标
1、知识与技能:
掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。
2、过程与方法:
(1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;
(2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。
3、情感态度与价值观:
(1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;
(2)通过性质的推导体会“特殊”。
八年级数学教案全套篇6
教学目标:
1.知道负整数指数幂=(a≠0,n是正整数).
2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
教学重点:
掌握整数指数幂的运算性质。
难点:
会用科学计数法表示小于1的数。
情感态度与价值观:
通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题.
教学过程:
一、课堂引入
1.回忆正整数指数幂的运算性质:
(1)同底数的幂的乘法:am?an = am+n (m,n是正整数);
(2)幂的乘方:(am)n = amn (m,n是正整数);
(3)积的乘方:(ab)n = anbn (n是正整数);
(4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n);
(5)商的乘方:()n = (n是正整数);
2.回忆0指数幂的规定,即当a≠0时,a0 = 1.
3.你还记得1纳米=10?9米,即1纳米=米吗?
4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。
二、总结:
一般地,数学中规定:
当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立. 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;
am?an = am+n (m,n是整数)这条性质也是成立的.
三、科学记数法:
我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。
启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.
八年级数学教案全套篇7
教学目标:
1、 掌握三角形内角和定理及其推论;
2、 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3、通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4、通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5、 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;
恰当转化条件;
恰当转化结论;
充分提示题目中各元素间的一些不明显的。关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
引导学生分析并严格书写解题过程
相关热词搜索: 八年级 全套 数学教案 八年级数学教案全套(七篇) 2023年八年级数学教案全套(七篇) 八年级数学超全教案