当前位置:首页 > 作文大全 >

光通信技术现状及其发展趋势探讨

发布时间: 2022-03-15 08:28:39 浏览:

摘 要 光缆通信在我国已有20多年光通信技术发展史和光纤光缆发展史。本文对光通信技术的发展现状作了简要介绍和论述,并对未来光通信技术的发展趋势作了简要评述。

关键词 光通信技术;现状;发展趋势

中图分类号TN92 文献标识码A 文章编号 1674-6708(2011)37-0219-02

0引言

光通信技术作为国家高新技术的制高点,在新科技新技术突飞猛进的今天,各国光通信新技术、新方案、新产品层的更新换代日新月异,光纤光缆及通信电缆技术必将获得前所未有的巨大发展。本文试图通过对光通信技术发展现状的分析,探讨光通信技术的发展趋势和方向。

1光通信技术发展现状

中国的光通信技术的发展,经历了许多曲折和困难,目前,从光通信的各个部分来说,已掌握了光纤、器件、系统等各个方面的关键技术,逐步走进了国际光通信的先进行列;从普及使用的角度来说,光通信技术覆盖了通信的各个领域,得到了广泛的应用。具体发展现状如下:

1)密集波分复用(DWDM)技术

自20世纪末波分复用技术出现以来,由于它能极大地提高光纤传输系统的传输容量,而迅速得到广泛的应用。单纤复用波道由开始的时候2波发展到1999年的160波,2007年的512波到今天的1 024波以上,发展速度是相当的惊人。2005年中华为公司已经在512波的系统已经可以商用。由过去只利用的C波段,发展到今天的L波段,S波段,可见技术的发展是如何的神速。同时,DWDM系统除了波长数和传输容量不断增加外,光传输距离也从600km左右大幅度扩展到2 000km以上。1.28Tbit/s(128×10Gbit/s)的DWDM系统已达到无电中继传输8 000km;实验室最高记录已达40Gbit/s无电再生传输10 000km。

2)光纤接入网技术

实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息进入千家万户的关键技术。FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光接入,因此可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,发展势头良好。

3)光器件EDFA技术

EDFA用作线路放大器实现了直接光放大,具有增益高、带宽宽、增益特性对光偏振状态不敏感、对数据速率以及格式透明且在多路系统中信道交叉串扰可忽略等优点,是它在光纤通信系统的一个重要应用。尤其EDFA在密集波分复用(DWDM)传输系统中的应用大大增加了光纤的传输信息容量,使EDFA成为光放大器的主流。同时,EDFA可以扩大网径和用户数,目前在我国已经大量采用EDFA的光纤CATV网。

2 光通信技术的发展趋势

2.1 WDM技术从长途传输领域向城域网传输领域发展

低成本是城域WDM系统最重要的特点。在城域网传输范围内通信传输距离通常小于100km,因此,此过程中长途网必须用的外调制器和光放大器不需使用。从而使元器件特别是无源器件的成本大幅度下降,同时也使整个系统的成本相应降低。与此同时,为了进一步降低城域WDM多业务平台的成本,粗波分复用(CWDM)系统的概念被提出。该系统的典型波长组合有3种,即4、8和16个,波长通路间隔达20nm,允许波长漂移±6.5nm,使系统对激光器的要求大大降低,同时也使成本大大减少。此外,由于CWDM系统对激光器的波长精度要求很低,无须致冷器和波长锁定器,不仅功耗低,尺寸小,而且其封装可以用简单的同轴结构,其体积、功耗和成本均远小于对应的DWDM器件。显然,从业务需求和成本考虑出发,CWDM应该在我国城域网具有良好的发展前景。

2.2全光网络发展

传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,对目前通信网干线总容量的进一步提高产生的限制性阻力。目前,光传输速率不断提高,预计在未来10年还将提高100倍,在这种超高速网中,如果继续采用原有的网络节点设备,将使整个网络变得庞大复杂难以实现,因此,实现全光联网是唯一的途径。从发展趋势来看,伴随电话、计算机通信、电视三网融合,因特网用户急剧增长,迫切需要WDM进入更广阔的领域。带有简易光交叉连接功能的光分叉复用设备(OADM)将应运而生,采用关键网元OADM和ODXC使网络的组构更加灵活,为实现简化的全光传输网提供条件。同时,未来全光网络的建设会采用无源的光器件,减少全光联网的故障率。因此,全光网的建立将在干线网的交叉节点上引入光交叉连接(OXC)设备和光波长交换,形成端到端的“虚波长”通路,实现用户端到端的全光网络连接。

2.3开发新一代G.655、G.656光纤

目前,光纤的可使用波段已扩大为1 260nm~1 675nm,带宽达415nm,按目前常用的0.4nm间距开通DWDM系统,可达1 100个波道。以目前单通道40Gbit/s的水平,单纤总容量为40Tbit/s以上。如果光纤的可用波段进一步延伸,光纤的可传输容量还可以继续增大,对快速增长的信息传输需求来说非常必要。目前,为了适应干线网和城域网的不同发展需要,在光纤光缆方面,虽然国际上的光纤新品种诸如G.655、G.656等不断出现,我国在光纤方面的研发也不甘示弱,基本上能跟上国际光纤光缆厂家。例如G.655、G.656等光纤在我国都已经可以大批量生产。虽然从目前来看,微结构光纤还没有可能取代常规光纤成为主要传输媒介,但是其特有的一些性能在未来的研究中却有可能成为光器件的材料,研制出一些特殊功能的器件来。

2.4光弧子通信

光孤子通信是一种非线性全光通信。其基本原理是根据光纤折射率的非线性光脉冲压缩与群速度色散(GVD)引起的脉冲展宽相平衡,从而使光信号脉冲在高速率长距离传输过程中保持波形不变。因此,光孤子通信最适合于波分复用等超高速大容量光通信。在未来的发展前景中,在传输速度方面光孤子技术应采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10Gbit/s~20Gbit/s提高到100Gbit/s以上。同时,在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100 000km以上,在高性能EDFA方面是获得低噪声高输出EDFA。

参考文献

[1]曹茂虹,刘礼.光纤通信技术的现状及发展趋势[J].光机电信息,2007(3) .

[2]袁捷.光纤通信技术的现状及前景[J].科技信息,2009(5).

相关热词搜索: 发展趋势 光通信 探讨 现状 技术

版权所有:无忧范文网 2010-2024 未经授权禁止复制或建立镜像[无忧范文网]所有资源完全免费共享

Powered by 无忧范文网 © All Rights Reserved.。冀ICP备19022856号